Science Curriculum

The purpose of the KIBSD Science curriculum map is to outline our inquiry approach to effective science instruction, communicate our standards (NGSS adopted) and provide a unit-by-unit guide to designing instruction with aligned resources. It is important to note that the maps are a guide, but all teachers have flexibility to organize units and utilize KIBSD resources in the way that best meets learner needs and interests. This work will never be complete, but it is a beginning. We recognize that not all teachers were a part of the work, but those who were did due diligence, taking no decision lightly, and recognize that there may be other perspectives not considered.

Kindergarten Science Standards

Physical Sciences: Motion and Stability: Forces and Interactions

  • Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object 
  • Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull

Physical Sciences: Energy

  • Make observations to determine the effect of sunlight on Earth’s surface 
  • Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Use observations to describe patterns of what plants and animals (including humans) need to survive

Earth and Space Sciences: Earth’s Systems

  • Use and share observations of local weather conditions to describe patterns over time 
  • Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs

Earth and Space Sciences: Earth and Human Activity

  • Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live
  • Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather
  • Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment 

Engineering, Technology, and Application of Science: Engineering Design

  • Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool
  • Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem 
  • Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs 

Grade 1 Science Standards

Physical Sciences: Waves and Their Applications in Technologies for Information Transfer

  • Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate 
  • Make observations to construct an evidence-based account that objects in darkness can be seen only when illuminated
  • Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light
  • Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs
  • Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive

Life Sciences: Heredity: Inheritance and Variation of Traits

  • Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents

Earth and Space Sciences: Earth’s Place in the Universe

  • Use observations of the sun, moon, and stars to describe patterns that can be predicted 
  • Make observations at different times of year to relate the amount of daylight to the time of year

Engineering, Technology, and Application of Science: Engineering Design

  • Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool 
  • Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem
  • Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs

Grade 2 Science Standards

Physical Sciences: Matter and Its Interactions

  • Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties 
  • Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose
  • Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object 
  • Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot 

Life Sciences: Ecosystems: Interactions, Energy, and Dynamics

  • Plan and conduct an investigation to determine if plants need sunlight and water to grow
  • Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants

Life Sciences: Biological Evolution: Unity and Diversity

  • Make observations of plants and animals to compare the diversity of life in different habitats

Earth and Space Sciences: Earth’s Place in the Universe

  • Use information from several sources to provide evidence that Earth events can occur quickly or slowly

Earth and Space Sciences: Earth’s Systems

  • Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land
  • Develop a model to represent the shapes and kinds of land and bodies of water in an area
  • Obtain information to identify where water is found on Earth and that it can be solid or liquid

Engineering, Technology, and Application of Science: Engineering Design

  • Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool
  • Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem 
  • Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs 

Grade 3 Science Standards

Physical Sciences: Motion and Stability: Forces and Interactions

  • Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object 
  • Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion
  • Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other
  • Define a simple design problem that can be solved by applying scientific ideas about magnets 

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death

Life Sciences: Ecosystems: Interactions, Energy, and Dynamics

  • Construct an argument that some animals form groups that help members survive

Life Sciences: Heredity: Inheritance and Variation of Traits

  • Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms
  • Use evidence to support the explanation that traits can be influenced by the environment

Life Sciences: Biological Evolution: Unity and Diversity

  • Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago
  • Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing
  • Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all
  • Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change

Earth and Space Sciences: Earth’s Systems

  • Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season
  • Obtain and combine information to describe climates in different regions of the world

Earth and Space Sciences: Earth and Human Activity

  • Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard

Engineering, Technology, and Application of Science: Engineering Design

  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost
  • Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem
  • Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved

Grade 4 Science Standards

Physical Sciences: Energy

  • Use evidence to construct an explanation relating the speed of an object to the energy of that object
  • Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents
  • Ask questions and predict outcomes about the changes in energy that occur when objects collide
  • Apply scientific ideas to design, test, and refine a device that converts energy from one form to another

Physical Sciences: Waves and Their Applications in Technologies for Information Transfer

  • Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move
  • Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen 
  • Generate and compare multiple solutions that use patterns to transfer information

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction
  • Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways

Earth and Space Sciences: Earth’s Place in the Universe

  • Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time

Earth and Space Sciences: Earth’s Systems

  • Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation
  • Analyze and interpret data from maps to describe patterns of Earth’s features

Earth and Space Sciences: Earth and Human Activity

  • Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment
  • Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans 

Engineering, Technology, and Application of Science: Engineering Design

  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost
  • Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem
  • Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved

Grade 5 Science Standards

Physical Sciences: Matter and Its Interactions

  • Develop a model to describe that matter is made of particles too small to be seen
  • Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved
  • Make observations and measurements to identify materials based on their properties 
  • Conduct an investigation to determine whether the mixing of two or more substances results in new substances 

Physical Sciences: Motion and Stability: Forces and Interactions

  • Support an argument that the gravitational force exerted by Earth on objects is directed down

Physical Sciences: Energy

  • Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Support an argument that plants get the materials they need for growth chiefly from air and water

Life Sciences: Ecosystems: Interactions, Energy, and Dynamics

  • Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment

Earth and Space Sciences: Earth’s Place in the Universe

  • Support an argument that the apparent brightness of the sun and stars is due to their relative distances from the Earth
  • Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky

Earth and Space Sciences: Earth’s Systems

  • Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact
  • Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth

Earth and Space Sciences: Earth and Human Activity

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment

Engineering, Technology, and Application of Science: Engineering Design

  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost
  • Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem 
  • Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved

Grade 6 Science Standards 

Physical Sciences: Matter and Its Interactions

  • Develop models to describe the atomic composition of simple molecules and extended structures
  • Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred
  • Gather and make sense of information to describe that synthetic materials come from natural resources and impact society
  • Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed
  • Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved
  • Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes

Physical Sciences: Motion and Stability: Forces and Interactions

  • Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects
  • Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object 
  • Ask questions about data to determine the factors that affect the strength of electric and magnetic forces
  • Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects
  • Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact

Physical Sciences: Energy

  • Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object
  • Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system
  • Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer
  • Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample
  • Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object

Physical Sciences: Waves and Their Applications in Technologies for Information Transfer

  • Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave 
  • Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials
  • Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells
  • Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function
  • Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells
  • Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively
  • Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms
  • Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms
  • Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism
  • Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories

Life Sciences: Ecosystems: Interactions, Energy, and Dynamics

  • Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem
  • Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems
  • Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem
  • Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations
  • Evaluate competing design solutions for maintaining biodiversity and ecosystem services

Life Sciences: Heredity: Inheritance and Variation of Traits

  • Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism
  • Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation

Life Sciences: Biological Evolution: Unity and Diversity

  • Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past
  • Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships
  • Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy
  • Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment 
  • Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms
  • Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time

Earth and Space Sciences: Earth’s Place in the Universe

  • Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons 
  • Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system 
  • Analyze and interpret data to determine scale properties of objects in the solar system
  • Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history

Earth and Space Sciences: Earth’s Systems

  • Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process
  • Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales
  • Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions
  • Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity
  • Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions
  • Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates

Earth and Space Sciences: Earth and Human Activity

  • Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes
  • Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects
  • Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment 
  • Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems
  • Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century

Engineering, Technology, and Application of Science: Engineering Design

  • Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions
  • Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem
  • Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success
  • Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved

Grade 7 Science Standards

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells
  • Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function
  • Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells
  • Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively
  • Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms 
  • Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms 
  • Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism 
  • Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories

Life Sciences: Ecosystems: Interactions, Energy, and Dynamics

  • Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem 
  • Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems
  • Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem
  • Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations
  • Evaluate competing design solutions for maintaining biodiversity and ecosystem services

Life Sciences: Heredity: Inheritance and Variation of Traits

  • Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism
  • Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation

Life Sciences: Biological Evolution: Unity and Diversity

  • Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past
  • Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships
  • Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy
  • Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment
  • Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms
  • Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time

Engineering, Technology, and Application of Science: Engineering Design

  • Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions
  • Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem
  • Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success 
  • Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved

Grade 8 Science Standards

Physical Sciences: Matter and Its Interactions

  • Develop models to describe the atomic composition of simple molecules and extended structures
    Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred 
  • Gather and make sense of information to describe that synthetic materials come from natural resources and impact society
  • Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed
  • Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved
  • Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processe

Physical Sciences: Motion and Stability: Forces and Interactions

  • Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects
  • Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object
  • Ask questions about data to determine the factors that affect the strength of electric and magnetic forces
  • Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects
  • Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact

Physical Sciences: Energy

  • Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object
  • Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system
  • Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer
  • Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample
  • Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object

Physical Sciences: Waves and Their Applications in Technologies for Information Transfer

  • Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave
  • Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials
  • Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells
  • Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function
  • Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells
  • Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively
  • Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms
  • Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms
  • Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism
  • Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories

Life Sciences: Ecosystems: Interactions, Energy, and Dynamics

  • Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem
  • Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems
  • Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem
  • Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations
  • Evaluate competing design solutions for maintaining biodiversity and ecosystem services

Life Sciences: Heredity: Inheritance and Variation of Traits

  • Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism
  • Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation

Life Sciences: Biological Evolution: Unity and Diversity

  • Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past
  • Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships
  • Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy
  • Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment
  • Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms
  • Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time

Earth and Space Sciences: Earth’s Place in the Universe

  • Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons
  • Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system
  • Analyze and interpret data to determine scale properties of objects in the solar system
  • Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history

Earth and Space Sciences: Earth’s Systems

  • Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process
  • Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales
  • Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions
  • Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity
  • Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions
  • Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates

Earth and Space Sciences: Earth and Human Activity

  • Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes
  • Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects
  • Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment
  • Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems 
  • Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century 

Engineering, Technology, and Application of Science: Engineering Design

  • Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions
  • Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem
  • Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success
  • Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved

High School Biology Standards

Life Sciences: From Molecules to Organisms: Structures and Processes

  • Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells
  • Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms
  • Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis
  • Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms
  • Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy
  • Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules
  • Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy

Life Sciences: Ecosystems: Interactions, Energy, and Dynamics

  • Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales
  • Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales
  • Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions
  • Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem
  • Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere
  • Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem
  • Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity
  • Evaluate evidence for the role of group behavior on individual and species’ chances to survive and reproduce

Life Sciences: Heredity: Inheritance and Variation of Traits

  • Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring
  • Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors
  • Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population

Life Sciences (LS): Biological Evolution: Unity and Diversity

  • Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence
  • Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment
  • Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait
  • Construct an explanation based on evidence for how natural selection leads to adaptation of populations
  • Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species
  • Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity

Engineering, Technology, and Application of Science: Engineering Design

  • Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants
  • Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering
  • Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts
  • Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem